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ABSTRACT 

We are testing higher-order differencing total 
variation diminishing schemes implemented in the 
reservoir simulator TOUGH2 to reduce numerical 
dispersion of phase fronts in geothermal flow 
problems.  The schemes are called total variation 
diminishing because they employ flux limiters to 
prevent spurious oscillations that sometimes occur 
with other higher-order differencing schemes near 
sharp fronts.  Thus it appears that total variation 
diminishing schemes rely on an implicit assumption 
that the overall variability of advected quantities 
stays constant or diminishes with time.  We use the 
Leonard total variation diminishing scheme in two 
special problems designed to test the applicability of 
the scheme for cases where this implicit assumption 
is violated.  In the first problem, we investigate the 
isothermal propagation of a phase front in a 
composite porous medium where phase saturation 
increases as the front enters the second medium.  In 
the second problem, we investigate the propagation 
of a phase front where boiling increases the 
saturation difference across the front as it propagates.  
In the composite porous medium problem, we find 
that spurious phase saturations can arise if the 
weighting scheme is based on relative permeability; 
for weighting based on phase saturation, no such 
oscillation arises.  In the boiling front propagation 
problem, the front position is highly sensitive to 
weighting scheme, and the Leonard total variation 
diminishing scheme is more accurate than upstream 
weighting because it decreases numerical dispersion 
in the thermal energy equation.     

INTRODUCTION 

Strong advective flow of two-phase fluids through 
fractures occurs during fluid production and 
reinjection in geothermal systems.  The numerical 
simulation of the propagation of phase fronts by 
finite difference methods in strongly advective flow 
systems is affected by numerical dispersion, 
especially when full upstream weighting is used, a 
scheme which tends to artificially smooth sharp 

fronts. Numerical dispersion can be diminished by 
decreasing grid size, but this can  
 
 
 
greatly increase execution times.  Another approach 
for reducing numerical dispersion is to use higher-
order differencing schemes.   
 
In higher-order differencing schemes, two upstream 
gridblocks are used to approximate quantities such as 
phase saturation (or relative permeability), species 
concentration, and temperature at interfaces between 
gridblocks. This is in contrast to upstream weighting 
which uses only one upstream gridblock.  In strongly 
advective problems and depending on the weighting 
scheme used, higher-order differencing can result in 
oscillatory and non-physical values near sharp fronts.  
These well-known problems have led to the 
development of total variation diminishing (TVD) 
higher-order schemes (e.g., Sweby, 1984).  TVD 
refers to the overall variation of quantities in the 
system tending to diminish with time rather than 
increase.  Thus TVD schemes appear to be based on 
the assumption that the intrinsic variability of 
quantities being advected diminishes with time. 
 
While component mass fractions can increase with 
time by a variety of processes that are independent of 
flow (e.g., radioactive decay and production 
[Oldenburg and Pruess, 1996]), some flow processes 
lead to total variation increasing situations.  In this 
paper, we investigate by numerical experiments using 
TOUGH2 (Pruess, 1987; Pruess, 1991) two special 
cases that can arise in geothermal systems where 
saturation variations increase across a moving phase 
front with time: (1) a composite porous medium 
phase propagation problem, and (2) a boiling front 
propagation problem.   

MATHEMATICAL DEVELOPMENT 

The accurate approximation of interface quantities is 
essential for diminishing numerical dispersion in 
finite difference methods.  Below, we briefly review 



the development of higher-order differencing 
schemes for the propagation of phase fronts.  The 
development refers to the three gridblocks shown in 
Fig. 1 where the flow is from left to right as shown 
by the large arrow.  We use fully implicit time-
stepping with all quantities taken at the most recent 
iterative step. 
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Fig. 1.  Three non-uniform grid blocks with flow 
from left to right.  The standard TOUGH2 
connection is between i and i+1 and has connection 
distances D1 and D2 and an interface at i+1/2.  
Higher-order schemes use the upstream grid block i-
1 with connection distances D1U and D2U and the 
interface i-1/2. 
        
The phase flux across the interface at i+1/2 is a 
function of the relative permeability which is a 
function of phase saturation.  Thus at the outset, we 
are faced with a choice of using a weighting scheme 
based on either relative permeability (kr ) or phase 
saturation (S).  For upstream weighting or for the 
case where kr  is a linear function of S, it is 
immaterial which quantity is used for weighting.  
However, for typical non-linear relative permeability 
functions, we will show later that results depend 
strongly on whether kr  or S is used as the basis of the 
weighting scheme.  For the sake of the development 
below, we will apply the weighting scheme to S.  
However, it should be kept in mind that all of the 
development below can be written in terms of kr  and 
identical results obtained for many flow problems.   
 
We begin by writing an approximation for S at the 
i+1/2 interface as 
  

 Si+1/2 ≈ Si + D1
Si+1 − Si
D1+ D2

 
 

 
         (1) 

 
which can be rearranged to 
 

 Si+1/2 ≈ Si +
D1

D1 + D2
Si +1 − Si( )   (2). 

 
Defining r, the ratio of upstream to downstream 
gradients, as follows, 
 

r ≡

∂S
∂x

 
 

 
 i−1/ 2

∂S
∂x

 
 

 
 i+1/ 2

=

Si − Si−1
D1U +D2U
Si+1 − Si
D1 +D2

 

 

 
 

 

 

 
 

             (3) 

 
and rearranging to 
 

 r ≡
D1 + D2
D1U + D2U

Si − Si−1
Si+1 − Si

 

 
  

 
          (4), 

 
we can propose that  
 

Si+1/2 ≈ Si + D1
D1 + D2

φ(r ) Si +1 − Si( )        (5). 

 
Depending on the function Φ(r), different 
approximations for the interface saturation Si+1/2 can 

be made (see Table 1). For example, if Φ(r) = 0, 
interface saturation is upstream weighted. If Φ(r) = 1, 
a weighted average scheme results.  For the interface 
weighting scheme to be TVD, Φ(r)  must fall on the 
heavy lines or within the shaded regions show in Fig. 
2 (e.g., Sweby, 1984; Datta-Gupta et al., 1991; Blunt 
and Rubin, 1992).   
 
Table 1.  Higher-order differencing schemes. 
 

Φ(r)  interface approximation 

0 full upstream weighting 

1 weighted average 

r 
 

two-point upstream 
 

(1 + r)
(r + |r|)

 

Van Leer scheme 

 
2/3 + r/3 

 
Leonard scheme 
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Fig. 2.  The heavy lines and shaded regions show the 
stable values of Φ(r) . 
 
Briefly, the flux limiter is applied to ensure a 
decrease in the total variation (TV), a quantity 
defined as  
 

        TV(S)n+1 = ∑
i
Si+1
n +1 − Si

n+1
             (6) 

 
where n denotes the time level and the sum runs over 
all gridblocks i.  Thus, as Eq. 6 shows, for a typical 
front propagation problem, the total variation will 
increase whenever there are jumps or oscillations in 
the advected quantity, S.  We emphasize again that 
all of the development above can just as well be 
written for relative permeability, kr , and correct 
equivalent weighting schemes derived for many flow 
situations.   
 
Phase fronts moving with negligible capillary effects 
self-sharpen due to the effects of relative 
permeability.  This effect tends to reduce numerical 
dispersion due to upstream weighting, resulting in 
limited benefits from more accurate higher-order 
TVD schemes relative to upstream weighting 
(Taggert and Pinczewski, 1987).  Thus, for simple 
phase displacement processes in uniform porous 
media, upstream weighting is accurate and efficient.  
However, there are many cases of phase front 
propagation in geothermal systems that are 
complicated by heterogeneity and non-isothermal 
effects that may benefit from higher-order  
differencing schemes.  This study is directed toward 
two such cases where the total variation in phase 
saturation increases with time.  
 
We implemented higher-order differencing schemes 
in TOUGH2 (Pruess, 1987; Pruess, 1991) with the 
restriction that the grids used must be either one or 
two-dimensional with rectangular gridblocks.  Within 
a TOUGH2 simulation, using higher-order TVD 
schemes entails finding the upstream gridblock, 
assuming locally one-dimensional flow, calculating 
Φ(r), applying the limiters to ensure Φ(r) is in a 

stable region of Fig. 2, and approximating interface 
values of phase saturation, relative permeability, 
concentration, or temperature  accordingly. 
Verification of the methods implemented into 
TOUGH2 was presented in Oldenburg and Pruess 
(1997).  The Leonard scheme (LTVD) where Φ(r) = 
2/3 +r/3 subject to the limiters shown in Fig. 2 has 
proven robust and accurate (Leonard, 1984; Datta-
Gupta et al., 1991; Oldenburg and Pruess, 1997) and 
we will explore its use further in the remainder of 
this paper. 

COMPOSITE POROUS MEDIA 

In order to investigate the effects of total variation 
increasing flows, we investigate first the case of 
phase saturation increasing with flow into a zone of 
differing relative permeability.  This is essentially a 
Buckley-Leverett problem for a composite porous 
medium.  Analytical solutions for this class of 
problem were presented by Wu et al., 1993.  The 
case chosen has water injection into a partially 
saturated composite medium consisting of a fractured 
rock on the left and a non-fractured rock on the right.  
The system is isothermal with parameters as given in 
Table 2 and boundary conditions as shown in Fig. 3.  
 
Table 2.  Parameters for composite medium 
Buckeley-Leverett problem. 
Composite porous medium  
Overall length 1 m 

Pressure on the left (P1) 103000 Pa 

Pressure on the right (P2) 100000 Pa 

Liquid saturation on the left 0.5 

Liquid saturation on the right 0.21 

Initial pressure 100000 Pa 

Initial liquid saturation 0.21 

Temperature 25 ˚C 

Rock 1 (fractured)  

length 0.4 m 

Porosity (φ) 0.01 

Permeability 1 x 10-12  m2  
Capillary pressure 0.0 Pa 
Relative permeability liquid:  
van Genuchten λ = 0.50 
                       Slr  = 0.01  
               Sls  = 1.0 

 

Relative permeability gas: 
Corey               Sgr  = 0.05 

 

Rock 2 (unfractured)  

length 0.6 m 

Porosity (φ) 0.25 

Permeability 1 x 10-13  m2  
Capillary pressure 0.0 Pa 
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Relative permeability liquid:  
van Genuchten λ = 0.35 
                       Slr  = 0.10  
               Sls  = 1.0 

 

Relative permeability gas: 
Corey              Sgr  = 0.20 
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Fig. 3.  Schematic of the Buckley-Leverett composite 
porous medium. 
   

Fig. 4.  Liquid saturation for the composite medium 
Buckeley-Leverett problem with upstream weighting. 
 
 
Shown in Fig. 4 are results for the saturation front at 
several different times for the case of upstream 
weighting.   We observe significant numerical 
dispersion with upstream weighting and the coarse 
grid consisting of 20 gridblocks in the Y-direction.   
 
Figs. 5 and 6 show the liquid saturation and relative 
permeability results for the LTVD scheme applied to 
S.  In this case, phase saturation is weighted 
according to Eq. 5 and the corresponding kr  is 
calculated at the interface.  The results show that in 
this case the phase saturation front is sharper than it 
is for upstream weighting and saturations are held to 
physically plausible values.  In the LTVD scheme,   

the phase saturation increases as the front encounters 
Rock 2, and upstream weighting will be applied 
locally  since the ratio of gradients becomes negative 
(See Fig. 2 and Table 1).  Thus the results in Fig. 5 
show that LTVD based on S produces sharp phase 
fronts without spurious overshoots in composite 
medium problems.  Fig. 6 simply shows the 
corresponding relative permeability for the composite 
medium.  Note in Fig. 6 that kr  is total variation 
diminishing while S is not. 
 
Shown in Figs. 7 and 8 are results for the LTVD 
scheme applied to kr   at the same times.  The LTVD 
scheme based on kr   also reduces numerical 
dispersion relative to upstream weighting (c.f., Fig. 
4) but note that it has also produced an undesirable 
overshoot in liquid saturation near the interface 
between the two porous media.   
 
 
 

Fig. 5.  Liquid saturation for the composite medium 
Buckeley-Leverett problem with LTVD based on S. 
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Fig. 6.  Relative permeability for the composite 
medium Buckeley-Leverett problem with LTVD 
based on S. 
 
 
We present in Fig. 8 the liquid relative permeability 
(krl ) at the same times.  Note that although the liquid 
saturation is total variation increasing, the relative 
permeability is total variation diminishing.  Thus the 
LTVD scheme based on kr  has ensured that kr  
diminished, but it allowed the undesired effect of the 
variation in saturation increasing beyond its physical 
bounds. 
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Fig. 7.  Liquid saturation for the composite medium 
Buckeley-Leverett problem with LTVD scheme 
based on krl . 
 

 
Fig. 8. Relative permeability for the composite 
medium Buckeley-Leverett problem with LTVD 
based on krl . 
 
The differences in behavior when TVD is applied to 
relative permeability as compared to phase saturation 
can be understood from the spatial variability of S 
and kr .  While relative permeability varies 
monotonically near the boundary between the two 
media, saturation varies non-monotonically (Figs. 5 
and 6).  Therefore, the ratio r of upstream to 
downstream gradients is always positive for kr , but 
is negative for S near the boundary.  This results in 
considerably different values for the flux limiter 
function φ(r) in this case. In most flow problems, the 
gradients of S and kr  will have the same sign 
everywhere, so that differences between applying 
TVD-weighting to S or kr   will be minor.  However, 
in problems where saturation and relative 
permeability gradients differ in sign, as may occur 
for immiscible displacement in composite media, 
TVD-weighting may generate significantly different 
results depending upon whether it is applied to S or 
kr .  As shown above, results are better when the 
TVD weighting is applied to the advected quantity S, 
rather than the derived quantity kr .  When upstream 
weighting is applied to interface quantities, as is 
common practice for problems with propagating 
phase fronts, there is no difference between applying 
upstream weighting to saturation or to relative 
permeability.  In the reservoir engineering literature, 
upstream weighting is usually thought of as being 
applied to relative permeabilities, or fluid mobilities 
(Aziz and Settari, 1979; Thomas, 1982).  The results 
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obtained here suggest that it would be more 
appropriate to always think of the interface weighting 
scheme as being applied to the advected quantity 
(saturation), as opposed to the derived quantity 
(relative permeability). 

 

 

BOILING FRONT  

In this problem, cold (T = 30˚C) water is injected into 
a 200 m long one-dimensional domain.  The system 
is initially nearly single-phase liquid at the saturated 
vapor pressure (P0  = 85.93 bar) at T0  = 300 ˚C.  A 
schematic of the system and initial and boundary 
conditions is shown in Fig. 9.  Parameters for the 
problem are presented in Table 3. 
 
The evolution begins by injecting cold water at the 
left-hand side at a rate of 0.4 kg/s and producing 
mass at the same rate from the right-hand side.  The 
production at the right-hand side lowers the pressure 
and induces boiling while the cold injection water 
tends to produce single-phase liquid conditions.  The 
boiling at the right-hand side causes the liquid 
saturations to decline from the initial conditions.  
Thus the difference in liquid phase saturation across 
the moving front increases with time.  A two-
dimensional version of this problem was presented 
by Oldenburg and Pruess (1997) with emphasis on 
the propagation of a tracer front in the liquid phase 
for a two-dimensional fracture.  Here we have further 
idealized the problem to show the performance of the 
LTVD scheme  in a very simple system and with 
emphasis on the phase front propagation. 
 
 

0 200 m

S     = 0.99l,0T  = 30 ÞCin
q     = -0.4 kg/s

Y (m)

T = 300 ÞC0

P = 85.93 bar0

in outq   = 0.4 kg/s

 
Fig. 9.  Boundary and initial conditions for the one-
dimensional injection and production problem. 
 
Results for upstream weighting and LTVD 
differencing schemes with 100 gridblocks are shown 
in Figs. 10 and 11, respectively, through profiles of 
liquid saturation and temperature.  The temperature 

profiles are shown by the dashed curves while the 
saturation is given by the solid curves; the 
temperature and saturation curves intersect in the 
figures at the phase front.  Note in Figs. 10 and 11 
that the upstream weighted results give a phase front 
that is farther advanced relative to the LTVD result.   
 
Unlike typical phase displacement problems which 
show minimal differences whether computed by 
upstream weighting or by higher-order schemes, the 
phase front locations in this problem are significantly 
different in the upstream and LTVD cases.  The 
advancement of the upstream weighted phase front 
relative to the LTVD phase front occurs because 
upstream weighting produces greater smearing of the 
temperature front, so that saturation temperature at 
prevailing pressures is reached at somewhat larger 
distance from the injection point.  The phase 
transition to two-phase conditions then also occurs at 
larger distance.  In addition to the upstream and 
TVD-weighted simulations shown in Figs. 10 and 11, 
a third simulation not shown here was performed in 
which TVD-weighting was applied only to interface 
temperatures, while phase saturations were upstream-
weighted.  This produced results very close to those 
of Fig. 11, confirming that it is the numerical 
dispersion of the temperature front, not that of the 
phase front, which causes the upstream-weighted 
results in Fig. 10 to deviate from the more accurate 
LTVD results of Fig. 11. 
 
The differences between the uptream and LTVD 
schemes diminish with increased resolution.  We 
show in Fig. 12 a summary of the results of phase 
front location vs. number of gridblocks at a time of 6 
months for this one-dimensional injection and 
production problem.  Note in Fig. 12 that the two 
schemes are converging slowly but that the LTVD 
scheme was closer to the grid-converged result at 
much coarser resolution.  When upstream weighting 
is used, numerical dispersion is proportional to ∆Y 
(the grid spacing), and therefore diminshes slowly 
when grids are refined.  Note finally that the fact that 
the saturation variation increases with time in this 
problem posed no problem for the LTVD scheme.  
 
 
Table 3.  Parameters for injection problem. 
Formation  
Length  200 m 

Rock grain density (ρR ) 2650 kg m-3  

Specific heat (cR ) 1000 J kg-1  ˚C-1  

Thermal conductivity 2.1 W m-1  ˚C-1  

Porosity (φ) 0.50 

Permeability 1 x 10-12  m2  
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Relative permeability: Corey 
   curves with Slr  = 0.30,  
     Sgr  = 0.05 

 

Initial temperature 300 ˚C 
Initial liquid saturation 0.99 
Initial pressure 85.93 bar 
Production/Injection  

Production rate 0.4 kg s-1  

Injection rate 0.4 kg s-1  

Injection enthalpy 125 kJ kg-1  
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Fig. 10.  Liquid saturation and temperature for the 
geothermal injection and production problem with 
upstream weighting. 
 

 
 
Fig. 11.  Liquid saturation and temperature for the 
geothermal injection and production problem with 
LTVD. 
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Fig. 12.  Phase front location vs. grid resolution for 
upstream weighting and LTVD schemes at t = 6 mo. 

CONCLUSIONS 

The LTVD scheme reduces numerical dispersion of 
phase saturation fronts relative to upstream weighting 
for phase front propagation problems.  However, 
because of self-sharpening effects, the improvement 
in results with LTVD relative to upstream weighting 
is minimal for many phase front propagation 
problems.  In other more complicated situations 
where the flow is not TVD, such as the case of flow 
through composite porous media or under boiling 
conditions, LTVD reduces numerical dispersion and 
avoids spurious oscillations that sometimes arise in 
other higher-order differencing schemes.  
Simulations of isothermal phase front propagation in 
composite porous media have shown that higher-
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order differencing schemes should be based on 
saturation (S) as opposed to relative permeability (kr 
).  For linear relative permeability functions or for 
homogeneous porous media, it is immaterial whether 
the higher-order scheme is based on S or kr .  In 
geothermal injection and production problems where 
boiling occurs, the location of the phase front may be 
very sensitive to the choice of weighting scheme.  
Our simulations show that the LTVD scheme is more 
accurate for the boiling front problem at a given 
discretization than upstream weighting, but that 
resolution of temperature fronts and phase front 
location is sensitive to grid resolution for both 
schemes.  
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